If it's not what You are looking for type in the equation solver your own equation and let us solve it.
196x^2+56x+2=0
a = 196; b = 56; c = +2;
Δ = b2-4ac
Δ = 562-4·196·2
Δ = 1568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1568}=\sqrt{784*2}=\sqrt{784}*\sqrt{2}=28\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-28\sqrt{2}}{2*196}=\frac{-56-28\sqrt{2}}{392} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+28\sqrt{2}}{2*196}=\frac{-56+28\sqrt{2}}{392} $
| 3x+20=100-2x | | x/3-9=16 | | 10/2x+x=23 | | 3y+-1=8 | | 39/3=x/5 | | 4x+20x=4(5x+3) | | b2+20b=80 | | x/3-8=16 | | 5×-2y+4=4×-3×+6 | | 7x=4+5x+3+2x+5= | | 130/2=390/x | | 10x^2=6 | | 1/3×d=6 | | 1.5+6x=5x+3.5 | | 12+3n=28 | | 976-x=-48.2 | | 9=36x+12 | | 4/32=10/2/x | | 8(z-6)=4+2z | | 3x+12=4x+15 | | 2b-2/5=b-3/15 | | 1/2x-3=23/4x | | 45+(30x)=165 | | 12x-2+10x+6=180 | | 7x+54+14x+84=180 | | .75=a+5 | | 5x+330=15x+50 | | 6z^2+2=56 | | 6-(4p-2)=p-1 | | 1=1.6x^2 | | -4(x-4)^2+2=74 | | 4x+7+2x=67 |